Reasearch Awards nomination

Email updates

Keep up to date with the latest news and content from Nutrition Journal and BioMed Central.

Open Access Research

Beverage consumption habits “24/7” among British adults: association with total water intake and energy intake

Sigrid Gibson1* and Susan M Shirreffs2

Author Affiliations

1 Sig-Nurture Ltd., Guildford, Surrey Gu1 2TF, UK

2 School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK

For all author emails, please log on.

Nutrition Journal 2013, 12:9  doi:10.1186/1475-2891-12-9

Published: 10 January 2013

Abstract

Background

Various recommendations exist for total water intake (TWI), yet it is seldom reported in dietary surveys. Few studies have examined how real-life consumption patterns, including beverage type, variety and timing relate to TWI and energy intake (EI).

Methods

We analysed weighed dietary records from the National Diet and Nutrition Survey of 1724 British adults aged 19–64 years (2000/2001) to investigate beverage consumption patterns over 24 hrs and 7 days and associations with TWI and EI. TWI was calculated from the nutrient composition of each item of food and drink and compared with reference values.

Results

Mean TWI was 2.53 L (SD 0.86) for men and 2.03 L (SD 0.71) for women, close to the European Food Safety Authority “adequate Intake” (AI) of 2.5 L and 2 L, respectively. However, for 33% of men and 23% of women TWI was below AI and TWI:EI ratio was <1 g/kcal. Beverages accounted for 75% of TWI. Beverage variety was correlated with TWI (r 0.34) and more weakly with EI (r 0.16). Beverage consumption peaked at 0800 hrs (mainly hot beverages/ milk) and 2100 hrs (mainly alcohol). Total beverage consumption was higher at weekends, especially among men. Overall, beverages supplied 16% of EI (men 17%, women 14%), alcoholic drinks contributed 9% (men) and 5% (women), milk 5-6%, caloric soft drinks 2%, and fruit juice 1%.

In multi-variable regression (adjusted for sex, age, body weight, smoking, dieting, activity level and mis-reporting), replacing 100 g of caloric beverages (milk, fruit juice, caloric soft drinks and alcohol) with 100 g non-caloric drinks (diet soft drinks, hot beverages and water) was associated with a reduction in EI of 15 kcal, or 34 kcal if food energy were unchanged. Using within-person data (deviations from 7-day mean) each 100 g change in caloric beverages was associated with 29 kcal change in EI or 35 kcal if food energy were constant. By comparison the calculated energy content of caloric drinks consumed was 47 kcal/100 g.

Conclusions

TWI and beverage consumption are closely related, and some individuals appeared to have low TWI. Energy from beverages may be partly compensated. A better understanding of interactions between drinking and eating habits and their impact on water and energy balance would give a firmer basis to dietary recommendations.

Keywords:
Water intake; Energy; Beverage consumption; Adults; Dietary patterns