Table 1

Effects of probiotic administration on diabetes mellitus – Experimental studies
References Probiotics Type of cell/animal model Quantity Study period Results
[34] Bifidobacterium animalis subsp. lactis 420 C57BL/6, ob/ob, CD14-/-, ob/obxCD14-/-, Myd88-/-, Nod1-/-or Nod2-/-mice fed a high fat diet 109 CFU/day 6 weeks ↓ TNF-α, IL-1β, PAI-1 and IL-6
↑Insulin sensitivity
[94] L. acidophilus (PZ 1041), L. gasseri (PZ 1160), L. fermentum (PZ 1162), and L. rhamnosus (PZ 1121) T84 cell - - L. acidophilus, L. fermentum, and L. gasseri: ↑ two genes encoding adherence junction proteins β-catenin and E-cadherin
↑ Transepithelial electrical resistance
↓ PKCδ
[96] Lactobacillus johnsonii N6.2 subsp. infantis ATCC Caco-2 cell/BB rats 1010 to 1011 CFU/L in cell culture and 108 CFU/day in rats - ↑ Paneth cell
[99] Lactobacillus johnsonii N6.2 and Lactobacillus reuteri TD1 BB rats 108 CFU/day 141 days Lactobacillus johnsonii N6.2: ↓ incidence of T1D; ↑ goblet cells and claudin-1; ↓ hexanoyl-lysine (oxidative stress biomarker)
[100] Lactobacillus johnsonii N6.2 and Lactobacillus reuteri TD1 BB rats, NOD mice, and C57BL/6 mice 1 × 108 CFU/day 140 days Positive TH17 phenotype modulation
[102] L. acidophilus, L. casei, and L. lactis Male Wistar rats fed a high fructose diet diet supplemented with 15% of dahi ad libitum 8 weeks ↓ Blood glucose, HbA1c, glucose intolerance, plasma insulin, liver glycogen, plasma total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and blood free fatty acids
[103] L. plantarum DSM 15313 Female C57BL/6 J mice fed a high fat diet 25 × 108 CFU/day 20 weeks ↓ Blood glucose
[104] VSL#3 (L. acidophilus MB 443, L. delbrueckii subsp. bulgaricus MB 453, L. casei MB 451, L. plantarum MB 452, B. longum Y10, B. infantis Y1, B. breve Y8, and S. salivarius subsp. thermophilus MB 455) ApoE-/-C57BL6 male mice 25 × 108 CFU/day 12 weeks ↓ Insulin
↑ Glucose tolerance
↑ Insulin signaling
↓TNF-α and RANTES
↑ IL-10
[105] VSL#3 (L. acidophilus MB 443, L. delbrueckii subsp. bulgaricus MB 453, L. casei MB 451, L. plantarum MB 452, B. longum Y10, B. infantis Y1, B. breve Y8, and S. salivarius subsp. thermophilus MB 455) NOD mice 1.5 × 109 CFU/day 12 weeks ↓ Hepatic NKT cell depletion
↓ IKKβ activity
↓ NF-κB binding activity
↑Insulin signaling
[106] VSL#3 (L. acidophilus MB 443, L. delbrueckii subsp. bulgaricus MB 453, L. casei MB 451, L. plantarum MB 452, B. longum Y10, B. infantis Y1, B. breve Y8, and S. salivarius subsp. thermophilus MB 455) Female NOD mice 9 mg/week 70 weeks ↓ Incidence of auto-immune diabetes
↓ Insulitis and decreased rate of β-cell destruction
↑ IL-10
[109] Lactococcus lactis ssp. diacetylactis NCDC 60, L. acidophilus NCDC 14, and L. casei NCDC 19 Male Wistar diabetic rats 15 g/day (8,83 CFU/g lactobacilli and 7,89 log CFU/g lactococci) 15 weeks ↑ Gastric emptying
Dahi probiotic feeding did not change blood glucose levels
↓ Thiobarbituric acid-reactive species in intestinal tissues
↓ HbA1c
[111] L. reuteri GMNL-263 Male Sprague–Dawley diabetic rats 1 × 109 CFU/day 4 weeks ↓ HbA1c and blood glucose
↓ JAK2 and STAT1 phosphorylation
↓ PAI-1
[112] Bifidobacterium adolescentis Male Wistar rats fed a high fat diet - 12 weeks ↓ Body weight
↑Insulin sensitivity
[114] Lactobacillus rhamnosus GG HT-29 cells 107-109 CFU/mL - ↓ NF-kB nuclear translocation
↓ LPS-induced IκBα degradation

HbA1c: Glycated hemoglobin; NF-kB: nuclear factor kappa B; LPS: Lipopolysaccharides; IκBα: inhibitory kappa B alpha; TNF-α: tumor necrosis factor alpha; IL-1β: interleukin-1 beta; PAI-1: plasminogen activator inhibitor-1; IL-6: interleukin-6; JAK2: Janus kinase 2; STAT1: signal transducer and activator of transcription 1; IL-10: interleukin-10; IKKβ: inhibitors of kappa beta kinase beta; NKT: natural killer T cells; RANTES: regulated upon activation, normal T-cell expressed and secreted; Th17: T helper 17; T1D: type 1 diabetes.

Gomes et al.

Gomes et al. Nutrition Journal 2014 13:60   doi:10.1186/1475-2891-13-60

Open Data