Skip to main content

Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial

Abstract

Background

Our previous studies demonstrated that dietary supplementation with milk fat globule membrane (MFGM) combined with habitual exercise improved muscle strength by stimulating neuromuscular development in mice. This study aimed to demonstrate the beneficial effects of dietary MFGM supplementation plus regular exercise on muscle strength and neuromuscular function in healthy humans.

Methods

The study was designed as a randomized, double-blind, placebo-controlled, crossover trial. Fourteen Japanese adults aged 31–48 years took daily MFGM (1 g) or placebo tablets during the 4-week study period and attended a training program twice a week. Physical function tests and surface electromyography (EMG) were conducted at baseline and at the end of the study period.

Results

The MFGM group had significantly greater leg extension strength than the placebo group after the 4-week study period. Surface EMG showed that the MFGM group had a significantly higher root mean square amplitude than the placebo group, which indicated that the MFGM group had higher motor unit activity.

Conclusions

Dietary MFGM supplementation combined with regular exercise improves skeletal muscle strength, which may be due to increased motor unit recruitment in healthy Japanese middle-aged adults.

Peer Review reports

Background

Muscle strength is an excellent indicator of general health. Optimal muscle function is important with respect to rehabilitation and quality of life in many musculoskeletal diseases [14]. However, starting at the age of 25 years, muscle strength in healthy men decreases in a linear fashion, losing 54–89 % of its capacity by the age of 75 years [5]. Therefore, the decline of skeletal muscle strength in younger aged adults should be prevented to maintain a higher quality of life in their older age.

Resistance training is well known to increase muscle mass and strength [6]. However, high-intensity and long-term resistance training is necessary to achieve satisfactory improvement of muscle mass and strength. Accordingly, more efficient strategies that boost the exercise-induced improvement of skeletal muscles are required to maintain general health for non-athletes. Nutritional supplementation may facilitate more efficient muscle improvement for people lacking exercise or when combined with low-intensity and low-frequency exercise. Recent studies demonstrated that dietary supplementation with amino acids [7] or tea catechins [8] significantly improved muscle mass and strength in the elderly when combined with regular, low intensity exercise.

Our recent studies in mice have demonstrated that dietary supplementation with milk fat globule membrane (MFGM), when combined with habitual exercise, significantly improved muscle mass and strength [9], as well as swimming endurance capacity [10]. MFGM is the structural membrane covering a triglyceride globule that is dispersed as emulsified bodies in milk [11]. Our previous study revealed that the beneficial effects of dietary MFGM on skeletal muscles was associated with stimulation of neuromuscular junction (NMJ) development [9], which is a critical structure of a motor unit (a single motor neuron and all of the muscle fibers that it innervates). MFGM supplementation in the diet combined with voluntary exercise (wheel-running) significantly increased muscle strength and expression of NMJ-related molecules in adult mice [9]; however, whether nutritional supplementation with MFGM can facilitate neuromuscular improvement by regular exercise in humans has yet to be explored.

The present study aimed to investigate whether dietary MFGM combined with regular exercise can increase skeletal muscle strength and neuromuscular function in healthy middle-aged adults.

Methods

Subjects

Fourteen male subjects (aged 31–48 years) were enrolled in the present study (Table 1). Subjects were excluded if they had uncontrolled hypertension, coronary heart disease, or if they engaged in resistance training in their daily lives. They were instructed not to change their daily exercise habits or diets during the study period. Signed informed consent from each subject was obtained after fully informing them about the details and methods of this study. The study was performed under the supervision of an occupational health physician, in accordance with the regulations of the Kao Corporation Ethics Committee for Internal Clinical Studies and in conformity with the Declaration of Helsinki.

Table 1 Characteristics of study subjects

Randomization and study protocol

The study was designed as a randomized, double-blind, placebo-controlled, crossover trial. Randomization was performed after baseline assessment. The randomization procedure was conducted by a person who was not involved in the study, and the subjects and test staff remained unaware of the assignments throughout its duration. The subjects were randomly divided into 2 groups. During the first 4-week intervention period, one group (n = 7) received placebo tablets and the other (n = 7) received MFGM tablets. Subjects took test tablets each day during the 4-week period (period 1) and underwent exercise training twice a week. A 4-week washout period was followed by a second 4-week intervention period (period 2) in which the groups were reversed. Physical function tests were performed at the beginning and the end of the 4-week intervention. We assessed the safety of the test tablets by evaluating the adverse events, discontinuation rate, and vital signs, as well as by conducting additional laboratory safety tests.

Milk fat globule membrane consumption

Each subject ingested a MFGM tablet (1 g) or a placebo tablet (1 g whole milk powder) daily for 4 weeks. The daily dose of MFGM (1 g; equivalent to 600 mL of whole milk) was chosen based on what is known about its nutritional safety and efficacy, after converting the minimal effective dose in mice [10] to a human equivalent while considering the relative body surface areas. On the exercise training enforcement days, the subjects were instructed to take the tablet within 1 h before training. On the other days, the subjects were instructed to consume the tablet at the time of their choice during their daily routines.

The MFGM was prepared from buttermilk by filtering and centrifugation. The MFGM and whole milk powder compositions were analyzed at Japan Food Research Laboratories (Tokyo, Japan). The composition of the MFGM and whole milk powder are shown in Table 2.

Table 2 Composition of MFGM and whole milk powder

Exercise training

Training was conducted twice weekly on nonconsecutive days for 4 weeks using StrengthErgo 240 stationary cycling exercise machines (Mitsubishi Electric Corporation, Tokyo, Japan). The subjects completed 3 sets of 15 % maximal voluntary contraction (MVC) cycle exercises for 60 s and 7 sets of 20 % MVC cycle exercises for 40 s at 50 rpm.

Physical function test

Physical function testing consisted of anthropometric measurements, blood analysis, and leg extension strength tests. Tests were conducted before and after the 4-week intervention period.

Anthropometric measurements

Body weight, body fat ratio, and muscle mass were measured using a bioimpedance body fat analyzer (BC-621, Tanita, Co., Tokyo, Japan). Thigh circumference was measured 15 cm proximal to the superior pole of the patella.

Blood sampling and analysis

Blood was collected from an intermediate vein of the forearm after an overnight fast for the following serum tests: aspartate aminotransferase (AST), alanine aminotransferase (ALT), glucose, triglyceride, and total cholesterol. The serum samples were analyzed at SRL Inc. (Tokyo, Japan). The numbers of white blood cells and red blood cells (RBCs), as well as the hemoglobin concentration, were measured with an automatic hemocytometer (Celltac MEK-5258, Nihon Kohden, Tokyo, Japan).

Leg extension strength

The isokinetic extension strength of each leg was the primary outcome and was measured using the StrengthErgo 240 (Mitsubishi Electric Co., Tokyo, Japan) [12, 13]. Each subject pedaled the apparatus with maximum effort 5 times. The peak muscle strength of the right and left legs was calculated as the maximal isokinetic leg extension strength.

Surface electromyography

Motor unit activity during the exertion of muscle force was evaluated using surface electromyography (EMG) [14, 15]. The surface EMG signals of the intermediate portion of the right vastus medialis were detected during leg extension strength measurement with the Ambu® Blue Sensor M (Ambu Ltd., Ballerup, Denmark). After preparing the skin with an alcohol swab to reduce impedance, an electrode was fixed on the skin surface so that it ran along the underlying muscle fibers. The EMG signal was measured using a Bio-monitor ME6000 (Mega Electronics Ltd., Kuopio, Finland). After the analog-to-digital conversion, the root mean square (RMS) amplitude, an indicator of motor unit activity [16, 17], was calculated using the MegaWin 3.0 software (Mega Electronics Ltd., Kuopio, Finland).

Sample size and statistical analysis

The sample size of this crossover study was based on our previous study investigating leg extension strength after exercise intervention, where the goal was to detect a 5 % change [18]. As we used two-sided tests to achieve type I error rates of less than 5 %, we determined that 14 subjects would be sufficient to provide a statistical power of 80 % in these types of studies.

All variables are presented as mean ± SEM. The differences in study endpoints or the changes from baseline between interventions were analyzed by using a linear mixed model. We included the fixed effects of group, period, period baseline, and the interaction of group and period. We also included subject as a random effect. When the model showed a significant intervention effect, pairwise comparison between interventions was performed with Bonferroni analysis, and changes were considered significant at P < 0.05. For statistical analysis, SPSS for Windows, release 23.0 (SPSS, Chicago, IL) was used.

Results

Effects on anthropometric values and blood variables

All subjects completed the intervention protocol, and there were no adverse side effects from the ingestion of the test tablets. No overall changes in body weight, body fat ratio, whole body and leg muscle mass, or thigh circumference were observed during the intervention period (Table 3).

Table 3 Changes in anthropometric variables before and after the intervention

There were no clinically significant changes in fasting serum AST, ALT, glucose, triglyceride, or total cholesterol levels during the 4-week intervention (Table 4). RBCs and Hemoglobin levels after 4 weeks were significantly higher in the MFGM group compared with the placebo group, although the mean values did not deviate from the Japanese standard values (Table 3).

Table 4 Values of serum and blood components before and after the intervention

Effect on muscle strength and electromyography parameters

After the intervention, a significant difference was detected for leg extension strength (Table 5). The strength in the MFGM group was significantly higher than in the placebo group at 4 weeks. Moreover, the percent change from the baseline was significantly higher in the MFGM group than in the placebo group. Although the baseline of period 2 was higher than that of period 1 in this crossover study, this apparent carryover effect after the washout period was not significant.

Table 5 Values of leg extension strength before and after the intervention

The percent change from baseline RMS, an indicator of motor unit activity during the leg extension strength measurement, was significantly higher in the MFGM group than in the placebo group (Table 6).

Table 6 Electromyogram results before and after the intervention

Discussion

This study had two major findings. The first was that daily intake of 1 g MFGM combined with regular, twice weekly exercise improved skeletal muscle strength (leg extension) in middle-aged adults, despite a lack of change in muscle mass. The second was that dietary MFGM supplementation plus regular exercise also increased the RMS of surface EMG, indicating that dietary MFGM increased motor unit activity during muscle contraction.

Surface EMG comprises of the sum of the electrical contributions made by the active motor units, and its amplitude is related to the net motor unit activity (i.e., the recruitment and the discharge rates of the active motor units) [16, 17]. Improved neurological adaptation in skeletal muscles has been recognized to provide a larger proportion of the initial strength increment during isotonic strength training compared to muscle hypertrophy [19]. This muscle reinforcement is accompanied by increased RMS that indicates increased motor unit recruitment during neurological adaptation. Because the leg muscle mass did not change after MFGM ingestion in the present study, increased muscle strength by dietary MFGM supplementation appears to be due to the increase in motor unit activity such as recruitment.

Pathway analysis after transcriptomic measurement in our previous study [9] revealed that dietary MFGM combined with regular exercise improved muscle strength in adult mice primarily by stimulating the pathway involving “nervous system development” in the skeletal muscle. This pathway includes functional annotations such as formation of synapses, growth of neurites, or development of NMJ. Dietary MFGM combined with exercise increased skeletal muscle expression of docking protein-7 (Dok-7) and muscle-specific receptor tyrosine kinase in mice [9], both of which play a critical role in NMJ formation [20, 21]. Defects in NMJ function causes muscle weakness in neuromuscular disorders, and Dok-7 gene therapy improves NMJ formation and rescues the motor activity [22]. The results in the present study are consistent with the previous findings and indicate that dietary MFGM plus exercise increases motor unit recruitment and enhances muscle strength, probably owing to neuromuscular mechanisms.

In this study, the semi-weekly exercise alone did not increase muscle strength in the placebo group. This may be due to the moderate intensity of the training, which challenged only 15–20 % of their leg extension strength. Nevertheless, nutritional supplementation with MFGM significantly boosted muscle strength in middle-aged adults completing this moderate intensity semi-weekly exercise.

We also observed increased RBCs and hemoglobin levels after dietary supplementation with MFGM. This result is consistent with our previous findings in mice [9]. The reason for the increased RBCs and hemoglobin after MFGM ingestion was unclear. MFGM is abundant in phospholipids that are critical components of the plasma membrane (Table 2). Decreased phospholipid content in the cell membrane of RBCs has been shown to attenuate the vulnerability of the cells [23], which may reduce cellular hemoglobin. One possible explanation is that absorbed phospholipids from MFGM might be incorporated into and stabilize the cell membranes of RBCs, hence retaining the hemoglobin. In fact, the number of RBCs tended to increase after MFGM ingestion for 4 weeks (Table 4). Because increased RBCs and hemoglobin improves oxygen transport and exercise performance [24], dietary supplementation with MFGM might also improve endurance capacity in humans. However, further studies are required to confirm the increase in RBCs and hemoglobin by dietary MFGM and clarify its underlying mechanism.

Several limitations of the present study should be considered. First, our sample size was small. Second, the washout period might be insufficient because the baseline value of the leg extension strength for period 2 was still higher than the baseline value for period 1. Third, the type and intensity of the exercise were also limited. Therefore, the effects of MFGM alone compared to those when combined with exercise of various types or intensities still need to be clarified. Finally, the dose-dependent nature of the beneficial effects of MFGM on muscles still requires investigation. Since activity of motor units varies with exercise intensity and type [25], we expect that dietary MFGM and exercise training would improve muscle function additively or synergistically. Studies comprising of larger cohorts are in progress to clarify these issues.

In conclusion, this study provides evidence that daily consumption of 1 g MFGM combined with regular exercise of moderate intensity improves muscle strength with increased motor unit activity, such as recruitment, in healthy Japanese middle-aged adult males. One gram of MFGM corresponds to 600 mL of milk; hence, absorbing adequate daily amounts of MFGM by consuming milk or dairy products may not be achievable. Therefore, daily supplementation with MFGM, together with regular exercise of moderate intensity, may be beneficial for the improvement of muscle function and physical performance.

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

Dok-7:

Docking protein-7

EMG:

Electromyography

MFGM:

Milk fat globule membrane

MVC:

Maximal voluntary contraction

NMJ:

Neuromuscular junction

RBCs:

Red blood cells

RMS:

Root mean square

SEM:

Standard error of the mean

References

  1. Danneskiold-Samsøe B, Grimby G. Isokinetic and isometric muscle strength in patients with rheumatoid arthritis. The relationship to clinical parameters and the influence of corticosteroid. Clin Rheumatol. 1986;5:459–67.

    PubMed  Google Scholar 

  2. Danneskiold-Samsøe B, Grimby G. The relationship between the leg muscle strength and physical capacity in patients with rheumatoid arthritis, with reference to the influence of corticosteroids. Clin Rheumatol. 1986;5:468–74.

    PubMed  Google Scholar 

  3. Flansbjer UB, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Arch Phys Med Rehabil. 2006;87:974–80.

    Article  PubMed  Google Scholar 

  4. Rossi MD, Brown LE, Whitehurst M. Knee extensor and flexor torque characteristics before and after unilateral total knee arthroplasty. Am J Phys Med Rehabil. 2006;85:737–46.

    Article  PubMed  Google Scholar 

  5. Danneskiold-Samsøe B, Bartels EM, Bülow PM, Lund H, Stockmarr A, Holm CC, et al. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol (Oxf). 2009;197:S1–68.

    Article  Google Scholar 

  6. Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians: effects on skeletal muscle. JAMA. 1990;263:3029–34.

    Article  CAS  PubMed  Google Scholar 

  7. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, Kato H, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60:16–23.

    Article  PubMed  Google Scholar 

  8. Kim H, Suzuki T, Saito K, Yoshida H, Kojima N, Kim M, et al. Effects of exercise and tea catechins on muscle mass, strength and walking ability in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. Geriatr Gerontol Int. 2013;13:458–65.

    Article  PubMed  Google Scholar 

  9. Haramizu S, Mori T, Yano M, Ota N, Hashizume K, Otsuka A, et al. Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. Springerplus. 2014;3:339.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haramizu S, Ota N, Otsuka A, Hashizume K, Sugita S, Hase T, et al. Dietary milk fat globule membrane improves endurance capacity in mice. Am J Physiol Regul Integr Comp Physiol. 2014;307:R1009–17.

    Article  CAS  PubMed  Google Scholar 

  11. Cavaletto M, Giuffrida MG, Conti A. Milk fat globule membrane components-a proteomic approach. Adv Exp Med Biol. 2008;606:129–41.

    Article  CAS  PubMed  Google Scholar 

  12. Abe K, Asai Y, Matsuo Y, Nomura T, Sato S, Inoue S, et al. Classifying lower limb dynamics in Parkinson’s disease. Brain Res Bull. 2003;61:219–26.

    Article  PubMed  Google Scholar 

  13. Ito K, Kimura Y, Tajika A, Fuchioka S, Iwasaka T, Nishiyama T. Ultrasonographic changes of the knee joint cartilage associated with physical characterization in middle-aged women: 6-month observational survey. J Phys Ther Sci. 2007;19:277–82.

    Article  Google Scholar 

  14. Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol. 2012;113:215–23.

    Article  PubMed  Google Scholar 

  15. Roatta S, Farina D. Sympathetic activation by the cold pressor test does not increase the muscle force generation capacity. J Appl Physiol. 2011;110:1526–33.

    Article  PubMed  Google Scholar 

  16. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol. 2004;96:1486–95.

    Article  PubMed  Google Scholar 

  17. Semmler JG. Motor unit activity after eccentric exercise and muscle damage in humans. Acta Physiol (Oxf). 2014;210:754–67.

    Article  CAS  Google Scholar 

  18. Ota N, Soga S, Hase T, Shimotoyodome A. Daily consumption of milk fat globule membrane plus habitual exercise improves physical performance in healthy middle-aged adults. Springerplus. 2015;4:120.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58:115–30.

    CAS  PubMed  Google Scholar 

  20. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science. 2006;23:1802–5.

    Article  Google Scholar 

  21. Strochlic L, Cartaud A, Cartaud J. The synaptic muscle-specific kinase (MuSK) complex: new partners, new functions. Bioessays. 2005;27:1129–35.

    Article  CAS  PubMed  Google Scholar 

  22. Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y, Yoshimura T, et al. Neuromuscular disease. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science. 2014;345:1505–8.

    Article  CAS  PubMed  Google Scholar 

  23. Sengupta A, Ghosh M. Integrity of erythrocytes of hypercholesterolemic and normocholesterolemic rats during ingestion of different structured lipids. Eur J Nutr. 2011;50:411–9.

    Article  CAS  PubMed  Google Scholar 

  24. Mairbaurl H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol. 2013;4:332.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nishimune H, Stanford JA, Mori Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve. 2014;49:315–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Kao Corporation, and there was no other funding/outside support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Shimotoyodome.

Additional information

Competing interests

The authors declare that they have no competing interest.

Authors’ contributions

SS and NO managed the study, analyzed and interpreted the data, and drafted the manuscript. AS was involved in the study conception and managing the research expenses. All authors contributed to the study design and critical revision of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soga, S., Ota, N. & Shimotoyodome, A. Dietary milk fat globule membrane supplementation combined with regular exercise improves skeletal muscle strength in healthy adults: a randomized double-blind, placebo-controlled, crossover trial. Nutr J 14, 85 (2015). https://doi.org/10.1186/s12937-015-0073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12937-015-0073-5

Keywords