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Milk is not just food but most likely a genetic
transfection system activating mTORC1 signaling
for postnatal growth
Bodo C Melnik1*, Swen Malte John1 and Gerd Schmitz2
Abstract

Milk has been recognized to represent a functionally active nutrient system promoting neonatal growth of
mammals. Cell growth is regulated by the nutrient-sensitive kinase mechanistic target of rapamycin complex 1
(mTORC1). There is still a lack of information on the mechanisms of mTORC1 up-regulation by milk consumption.
This review presents milk as a materno-neonatal relay system functioning by transfer of preferential amino acids,
which increase plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1
(GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) for mTORC1 activation. Importantly,
milk exosomes, which regularly contain microRNA-21, most likely represent a genetic transfection system enhancing
mTORC1-driven metabolic processes. Whereas human breast milk is the ideal food for infants allowing appropriate
postnatal growth and species-specific metabolic programming, persistent high milk signaling during adolescence
and adulthood by continued cow´s milk consumption may promote mTORC1-driven diseases of civilization.
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Introduction
Milk is a highly specialized, complex nutrient system devel-
oped by mammalian evolution to promote postnatal
growth. In contrast to feeding artificial infant formula, only
human milk allows appropriate metabolic programming
and protects against diseases of civilization in later life [1].
However, continued consumption of cow´s milk and dairy
products during adolescence and adulthood is an evolu-
tionarily novel behavior that may have long-term adverse
effects on human health [2]. It is the intention of this re-
view article to unravel milk´s functionality as a signaling
system of evolution. The mechanisms of milk signaling
presented here have been elucidated by translational re-
search of the endocrine effects of cow´s milk consumption
as well as individual protein components of bovine milk
(whey protein and casein) on human subjects. The crucial
function of milk of all mammals is to promote postnatal
growth and to assure appropriate species-specific postnatal
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metabolic programming. On the molecular level, cell
growth, cell proliferation, protein- and lipid synthesis, ana-
bolic metabolic processes, and inhibition of autophagy are
mediated by the nutrient-sensitive kinase mechanistic target
of rapamycin complex 1 (mTORC1) [3-5]. mTORC1 is acti-
vated by branched-chain amino acids, especially leucine,
the most abundant amino acid of whey proteins, growth
factors like insulin and insulin-like growth factor-1 (IGF-1),
and sufficient cellular energy sensed by AMP-activated kin-
ase (AMPK) [3,5,6]. Cow´s milk (subsequently termed
“milk”) appears to promote mTORC1 signaling by provid-
ing amino acids that function as endocrine messengers to
increase IGF-1 and insulin secretion as well as by milk-
derived exosomal regulatory microRNAs (miRs), especially
miR-21, which attenuates the inhibitory effects of various
tumor suppressor proteins like phosphatase and tensin
homolog (PTEN), Sprouty 1 and 2 and programmed cell
death 4 (PDCD4) on mTORC1-signaling.
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Amino acid signaling of milk
Tryptophan-GH-IGF-1-mTORC1 pathway
Milk provides substantial amounts of tryptophan easily
hydrolyzed from α-lactalbumin in milk´s whey protein
fraction. Tryptophan promotes pituitary serotonin synthe-
sis [7], which increases growth hormone (GH) secretion
[8]. GH stimulates hepatic IGF-1 synthesis. Both, GH and
IGF-1 have been shown to increase by milk consumption
[9]. Casein proteins are rich sources of tryptophan, too.
Casein in comparison to whey protein has been shown to
differentially increase hepatic IGF-1 synthesis [10]. There
is substantial epidemiological evidence that milk con-
sumption efficiently elevates IGF-1 plasma levels by 20 to
30% in comparison to non-dairy consumers [9-14].

Leucine-insulin-mTORC1 pathway
Water soluble, easily hydrolysable whey proteins in com-
parison to all other animal-derived structural muscle pro-
teins provide highest amounts of the branched-chain
amino acids (BCAAs) leucine, isoleucine and valine, which
raise postprandial insulin plasma levels within minutes
[15-17]. Furthermore, whey proteins induce the secretion
of the incretin glucose-dependent insulinotropic polypeptide
(GIP), which in concert with insulinotropic BCAAs co-
stimulates insulin secretion of pancreatic β-cells [15,16].
Milk proteins, especially leucine, stimulate the release of
the intestinal incretin glucagon-like peptide-1 (GLP-1)
[18]. It has previously been shown that leucine stimulates
insulin secretion by β-cells due to its metabolism by oxida-
tive decarboxylation and the ability of leucine to allosteri-
cally activate glutamate dehydrogenase (GDH) by β-cell
mitochondria [19-21]. Xu et al. [22] demonstrated that leu-
cine induced translation initiation by phosphorylation of
4E-BP-1 (formerly termed PHAS-I) and S6K, through the
mTORC1-signaling pathway of pancreatic β-cells. In β-
cells, leucine activates mTORC1 [19,20] that regulates in-
sulin secretion and β-cell mass expansion [23-25]. Leucine
not only increases insulin secretion but also enhances insu-
lin signaling in insulin target tissues [26]. Chronic leucine
supplementation elevated basal IRS-1 phosphorylation on
tyrosine 632 and improved insulin-stimulated Akt and
mTOR phosphorylation in liver, skeletal muscle and adi-
pose tissue of rats fed a high fat diet [26]. In human skel-
etal muscle direct evidence has been provided that whey
protein intake raised mTORC1 activity [27]. Thus, milk-
derived BCAAs, especially leucine, appear to function as
important messengers of mammalian lactation promoting
insulin secretion and β-cell mass expansion required for
appropriate mTORC1-driven postnatal growth.

Tryptophan-GIP-GH-IGF-1-mTORC1 pathway
Tryptophan deficiency has profound inhibitory effects
on protein synthesis, RNA translation and growth [28].
Intragastric addition of tryptophan to early-weaned
piglets increased intestinal GIP secretion [29]. Whey pro-
teins and caseins are rich protein sources of tryptophan.
Test meals of 16.7 g and 18.2 g whey protein to healthy
young adults substantially increased GIP secretion and
postprandial plasma GIP concentrations [15,16], further
supported by own data on postprandial plasma GIP levels
of 10 healthy young adults (8 males, 2 females, mean age
25 yrs) after 30 g whey protein intake (Figure 1). Hydro-
lyzed peptides of whey protein competitively inhibit the
GIP inactivating enzyme dipeptidyl peptidase IV, thereby
extending GIP bioactivity [30]. GIP may not only signal
via the entero-insular axis stimulating insulin secretion
but also enhances GH secretion of the somatotroph cells
of the pituitary, which express the GIP-receptor (GIPR)
[31]. GIPR activation elevates cAMP, which drives GH-
promoter activity [31]. Thus, GIP not only responds to
dietary glucose but may function as a whey (tryptophan)-
dependent GH-stimulating hormone that activates both
pancreatic insulin as well as hepatic IGF-1 synthesis for
mTORC1-dependent protein and lipid synthesis required
for cell growth. Remarkably, deletion of tryptophan from a
hepatocyte culture medium substantially decreased IGF-1
synthesis [32]. In accordance, Rich-Edwards et al. [9] dem-
onstrated that milk consumption of children increased
serum GH and IGF-1 levels and shifted the somatotropic
axis to higher levels. Furthermore, it has been demon-
strated in ovine hepatocyte cultures that IGF-1 synthesis
clearly depends on amino acid availability in a dose
dependent manner [33]. In a rat hepatocyte primary cul-
ture, IGF-1 mRNA expression was dependent on amino
acid availability [34]. Furthermore, the essential amino
acid content of the diet is critical for the optimal restor-
ation of IGF-1 after fasting, when protein intake is reduced
[35]. Recent evidence has been provided that post-exercise
replenishment of essential amino acids plus carbohydrate
significantly increased leucine and free IGF-1 serum levels
of 8 young healthy males [36]. Insulin increases hepatic
IGF-1 synthesis and enhances free IGF-1 bioactivity by in-
hibition of hepatic insulin-like growth factor-binding
protein-1 (IGFBP-1) [37-39]. IGFBP-2 may be subject to
dual control, with GH and amino acid availability serving
as the primary regulators [40,41]. Thus, milk-derived
amino acids provide a sophisticated regulatory network
(GH, insulin and amino acids, especially leucine and tryp-
tophan) that stimulates downstream IGF-1-signaling.

Amino acid-IGF-1-insulin-mTORC1 pathway promoting
cell growth
As demonstrated above milk-derived amino acids up-
regulate the secretory activity of the pituitary gland (GH se-
cretion), the liver (IGF-1 secretion), the pancreatic β-cells
(insulin secretion), the intestinal enteroendocrine K-cells
(GIP secretion), and L-cells (GLP-1 secretion). Milk pro-
teins in comparison to all other animal proteins provide the
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Figure 1 Mean (± SD) postprandial leucine, tryptophan and insulin serum levels and postprandial GIP plasma levels after a 30 g whey
protein drink (WD) of 10 healthy volunteers (8 males, 2 females, mean age 25.6 ± 6.0 yrs).
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highest postprandial levels of the BCAAs leucine, isoleucine
and valine [15,16,42]. Milk-driven insulin/IGF-1 signaling
combined with leucine abundance provides optimal condi-
tions for up-regulation of mTORC1 mediating accelerated
growth and proliferation of peripheral cells of the milk re-
cipient. Persistent milk consumption and dairy-enriched
Western diet thus represents a fundamental stimulus for
continued mTORC1 activation with all its adverse conse-
quences in adolescence and adulthood [43].

MicroRNA signaling of milk
The role of milk´s exosomal microRNAs
Secreted microRNAs (miRs) represent a newly recognized
most important layer of gene regulation in eukaryocytes,
which plays a relevant role for intercellular communication
[44,45]. miRs bind through partial sequence homology to
the 3′-untranslated region of target mRNAs and cause
either translational block or less frequently mRNA degrad-
ation [46]. miRs that are enclosed by membranous
microvesicles, so-called exosomes, play a pivotal role for
horizontal miR transfer [47]. Intriguingly, breast milk con-
tains the highest concentration of total RNAs (47,240 μg/L)
in comparison to other body fluids like plasma (308 μg/L)
[48]. There is accumulating evidence that bovine and hu-
man milk transfer substantial amounts of miRs for regula-
tory functions by exosomal transport [49-51]. Chen et al.
[50] have detected 245 miRs in cow’s milk. They reported
relatively high and consistent expression of seven miRs in
mature cow´s milk at various lactation periods listed from
highest to lowest sequencing frequencies: miR-21 (24,137),
miR-99a (24,097), miR-148a (16,597), miR-30d (14,089),
miR-200c (11,010), miR-26b (6,595) and miR-26a (3,376),
respectively [50]. In cow´s milk, whey and bovine colos-
trum, miR-containing exosomes of 50–100 nm have been
identified [52-54].
Milk exosomal miRs are of functional importance for the

development and maturation of the neonate´s immune
system [54-56]. These findings implicate that exosomal
miRs of milk may reach the systemic circulation and organ
systems. The exosome lipid membrane protects milk-
derived miRs against degradation. Remarkably, miRs of
cow´s milk are resistant against acidic conditions (pH2) as
well as heat exposure and external RNAse treatment [51],
most likely withstanding the harsh degrading conditions in
the gastrointestinal tract. Although, raw milk contains the
highest amounts of total miRs, pasteurized commercial
milk and milk powder still contain substantial and stable
concentrations of miRs [50]. It has already been suggested
that, milk-derived exosomes may pass the intestinal barrier
and reach the systemic circulation [51]. Intestinal cells re-
lease exosomes of 30–90 nm in diameter from their apical
and basolateral sides [57]. The tetraspanin CD63, a known
exosome marker of cow´s milk exosomes [52], is present
on intestinal epithelial-derived exosomes [57]. CD63- and
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CD81-containing tetraspanin molecules have been
detected on exosomes in human plasma [58]. In fact,
blood is regarded as a physiological fluid for exosome cir-
culation in the body, pointing to the important role of
exosomes as carriers for cell-cell or organ-organ commu-
nications [58-60]. Furthermore, bovine milk´s predomin-
ant miR species, miR-21, is a major component of human
plasma [61]. Thus, it is conceivable that milk´s exosomal
miRs reach the plasma compartment to function as a mes-
senger system promoting postnatal growth. In fact, it has
already been demonstrated that a diet-derived miR, the
plant MIR168a, reaches the plasma compartment of hu-
man subjects and affects LDLRAP1 metabolism in the
liver [62]. Thus, there is good reason to assume that cow´s
milk-derived miRs affect distant regulatory networks and
organs of the milk recipient. A systemic transfer of milk-
derived miRs to the neonate or the persistent milk
consumer may augment mTORC1-mediated growth sig-
naling, which is a physiologically required process for
postnatal growth and development but not for humans
after the lactation period.

Potential role of milk miR-21 for the augmentation of
mTORC1 signaling
Exosomal miR-21, a consistent component of cow´s milk
and human breast milk [50,56], appears to play a key
role in mTORC1 signaling. Critical targets of miR-21 are
mRNAs of important tumor suppressor proteins in-
volved in upstream and downstream suppression of
mTORC1 signaling, i.e., PTEN [63-66], Sprouty1 and
Sprouty2 [67-69], PDCD4 [70-72] (Figure 2). Further-
more, miR-21 has been shown to induce the cell cycle
promoter cyclin D1 in an mTORC1-dependent manner
[73]. Supposed that milk-derived miR-21 reaches distant
cells of the milk recipient, PTEN suppression could in-
crease insulin/IGF-1/PI3K/Akt signaling, which further
augments mTORC1 activation. miR-21-induced inhib-
ition of Sprouty1 and 2 would amplify Ras-Raf-MEK-
ERK signaling, which additionally suppresses TSC2 and
thus raises mTORC1 activity (Figure 2). Furthermore,
miR-21 could stimulate the initiation of translation by
repression of PDCD4, which is a suppressor of transla-
tion initiation that inhibits the RNA helicase eIF4A [74].
Both, 4E-BP-1 and PDCD4 are crucial regulatory inhibi-
tors of translation initiation and thus of protein synthesis.
Activation of the mTORC1 pathway and its substrate kin-
ase S6K1 results in subsequent phosphorylation of 4E-BP-1
and PDCD4 that promote eIF4E-eIF4G complex assembly
and stimulate mRNA translation [74]. miR-21-mediated
suppression of PDCD4 expression may further amply trans-
lation initiation, a reasonable regulatory step of milk signal-
ing to promote postnatal growth. In this regard, miR-21
signaling of milk appears to enhance upstream and down-
stream mTORC1 signaling.
Thus, milk appears to combine both amino acid- and
miR-mediated pathways to optimize mTORC1 signaling
for the promotion of postnatal growth. However, it is of
critical concern that miR-21 is a well-known oncogene,
which by suppressing various tumor suppressor genes
plays a key role in resisting programmed cell death [75].
In comparison to amino acid signaling of milk, which pri-
marily affects layers of posttranslational modifications,
miR signaling of milk may represent an even more power-
ful archaic regulatory network, because it interferes with
posttranscriptional regulation of numerous genes and
gene networks. In fact, miR-21 has been shown to contrib-
ute to renal cancer cell proliferation and migration via ac-
tivation of mTORC1 [76].

Milk signaling and the promotion of diseases of civilization
There is accumulating evidence that chronic diseases of
civilization are associated with increased mTORC1 sig-
naling [77,78], like acne [79,80], obesity [81,82], type 2-
diabetes [77,83], arterial hypertension [84], Alzheimer´s
disease [85], cancer [86], especially prostate cancer
[87,88]. Thus, cow´s milk is not just a simple food for
humans, but a tremendously powerful evolutionary pro-
gram of the faster growing species Bos taurus, which
may permanently over-stimulate mTORC1 signaling in
human milk consumers. In this regard the milk kinship
hypothesis appears in a new light, which explains the in-
creased risk for genetic disease in offspring of marriages
of “milk siblings”, who were breastfed by the same
woman (forbidden by the Qur´an in countries of the
Middle East) [89]. Thus, we are at the beginning to ask
for the metabolic consequences of bovine milk-derived
miRs on human subjects during various phases of hu-
man growth and development.

Milk-mediated mTORC1-activation, adipogenesis and
insulin resistance
Further research should investigate the precise trafficking
of milk exosomes, which most likely reach the systemic cir-
culation of the milk recipient. Continued mTORC1-
activation by milk-derived exosomal transfer of miR-21
may represent a persistently adverse health effect of regular
milk and dairy product intake, which may play an import-
ant role for the development and progression of
mTORC1-driven diseases of civilization [77-88]. In analogy
to the postulated Trojan exosome hypothesis explaining the
role of exosomes for the spread of RNA viruses [90], the
milk exosome system too appears to function as a Trojan
horse “transfecting” the neonate´s metabolism to ensure
species-specific mTORC1-driven growth and anabolism.
There is accumulating evidence that milk consumption

in children, adolescents and adults increases body mass
index (BMI) [81-83,91-93] and induces insulin resistance
in children [17]. In Nordic countries, where women
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regularly consume milk during pregnancy, increased in-
fant birthweights related to dairy protein intake during
pregnancy have been reported [94,95].
In comparison to all other structural animal proteins,

whey proteins provide highest amounts of most easily
hydrolysed BCAAs [42], which raise postprandial plasma
BCAA levels within minutes [15,16]. Thus, other high
BCAA sources like muscle proteins of beef differ from sol-
uble milk proteins, especially whey, by a more retarded re-
lease of BCAAs into the systemic circulation. In fact, beef
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Potential role of milk-derived miRs in metabolic regulation
There is accumulating evidence that miRs are highly
connected nodes in regulatory networks underlying
adipogenesis and adipose dysfunction in obesity [100].
Kim et al. [101] demonstrated that miR-21 regulates
adipogenic differentiation in mesenchymal stem cells
derived from human adipose tissue. The same group
observed a correlation between miR-21 levels and adi-
pocyte number in white adipose tissue (WAT) of high
fat-diet induced obese mice [102]. The later study sug-
gests that miR-21 may control the proliferation of adi-
pocyte precursors [102]. There is further compelling
evidence that adipogenesis depends on mTORC1 sig-
naling [103]. As miR-21 reduces the expression of vari-
ous tumor suppressor genes of the mTORC1 signaling
pathway, milk-derived exosomal miR-21 may promote
adipogenesis. In fact, genetic deletion of S6K1 in mice
(S6K1−/− mice), the downstream target of mTORC1,
inhibited the transformation of mesenchymal stem cells
into adipocytes and reduced the total number and size
of adipocytes [104]. Ectopic expression of miR-103 in
preadipocytes accelerated adipogenesis as measured by
both the up-regulation of many adipogenesis markers
and by an increase in triglyceride accumulation at an
early stage of adipogenesis [105]. miR-103 is a compo-
nent of cow´s milk [51] (Table 1).
Insulin-induced gene 1 (insig-1) mRNA is a validated

target of miR-29a [106], a further miR detected in cow´s
milk [54]. Insig-1 binds sterol regulatory element-binding
protein (SREBP) cleavage-activating protein in the endo-
plasmic reticulum, thereby blocking proteolytic processing
required for SREBP activation [107]. Insig-1 restricts lipo-
genesis in mature adipocytes and inhibits differentiation in
preadipocytes [108]. Inactivation of insig-1 mRNA by
milk-derived miR-29a may thus be another potential
mechanisms by which milk consumption my promote
adipogensis and BMI increase as observed in children, ad-
olescents and adults [81-83,91-93].
Remarkably, cow´s milk contains substantial amounts

of miR-155 [51]. The target of miR-155 is the adipogenic
Table 1 Selected milk-derived miRs and their potential impac

Milk-derived miR Ref. miR function in metabolism

miR-21 50 miR-21: Inhibition of various tumor sup

Increased adipogenesis

miR-29a 54 miR-29a: Down-regulation of Insig-1 w

miR-29b 51 miR-29b: Reduction of BCKD and reduc

miR-103 51 miR-103: Increased adipogenesis

miR-155 51 miR-155: Reduction of brown adipose

Let-7a, b, c, f 51 Let-7: overexpression results in insulin
transcription factor CCAAT/enhancer-binding protein
β (C/EBPβ). Overexpression of miR-155 in mice has been
shown to reduce brown adipose tissue (BAT) mass [109].
Thus, milk miR-155 intake may attenuate thermogenesis
of BAT, an unfavorable condition promoting lipid and en-
ergy storage in WAT promoting obesity. However, attenu-
ation of BAT thermogenesis may be a developmentally
appropriate postnatal event.
Elevated plasma BCAAs have been associated with re-

duced cellular BCAA utilization and/or incomplete BCAA
oxidation [110]. The mitochondrial BCAA oxidation
checkpoint, which commits BCAAs to degradation is the
branched-chain α-ketoacid dehydrogenase (BCKD) com-
plex. BCKD activity is reduced in WAT of obese individ-
uals [110]. miR-29b is targeted to the mRNA for the
dihydrolipoamide branched chain acyltransferase compo-
nent of BCKD and prevents translation when bound
[111]. Thus, miR-29b inhibits the pathway of BCAA ca-
tabolism. Intriguingly, miR-29b is a major miR of bovine
milk [51]. Milk´s miR-29b may thus function to maintain
high plasma BCAAs levels important for mTORC1-
dependent growth and appropriate amino acid uptake for
protein de novo biosynthesis of functional and structural
proteins required for postnatal growth. High plasma
levels of milk-derived BCAAs together with milk-miR-
29b-mediated inhibition of BCAA catabolism may thus
over-activate mTORC1-S6K1 signaling. Insulin resistance
during mTORC1-driven phases of growth may represent a
negative feedback mechanism, induced by up-regulated
S6K1, which via IRS-1 phosphorylation inhibits down-
stream insulin signaling [112]. These metabolic events
may explain the link between elevated BCAA plasma
levels and insulin resistance [113]. In fact, Hoppe et al.
demonstrated that milk consumption but not meat (which
misses miR-29b) induced insulin resistance in Danish pre-
pubertal boys [17]. Thus, milk, the starter kit of mamma-
lian evolution, appears to execute a highly sophisticated
metabolic program, which orchestrates BCAA-, miR-21-
and miR-29b-driven mTORC1-mediated protein biosyn-
thesis. In synergy with activated protein biosynthesis, the
t on metabolism

Ref.

pressor gene mRNAs (PTEN, Spouty1, Sprouty2, PDCD4) [63-72,75]

[100-102]

ith increased lipogenesis and adipocyte differentiation [106]

[107,108]

ed BCAA catabolism [111]

[110]

[100,105]

tissue and thermogenesis [109]

resistance and disturbed glucose homeostasis [120,122]
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mTORC1-driver milk should promote lipid synthesis
too. Remarkably, it has recently been recognized that
activated mTORC1 induces the expression of key tran-
scription factors of lipogenesis, sterol response element
binding protein-1 (SREBP-1) [4,114-116], and peroxi-
some proliferator-activated receptor-γ (PPARγ) [117,118].
Furthermore, activated mTORC1 has been shown to sup-
press lipolysis, stimulates lipogenesis and promotes fat
storage [119]. Thus, milk appears to provide an endocrine
signaling environment for increased mTORC1-driven
lipogenesis and fat storage as well as miR-155-induced
suppression of BAT differentiation resulting in BMI eleva-
tions and fat deposition in WAT [81-83,91-93].
Milk contains substantial amounts of let7a, let7b, let7c

and let7f [50]. There is accumulating evidence that the
Lin28/let-7 axis regulates glucose metabolism [120].
Muscle specific loss of Lin28a and overexpression of let-7
resulted in insulin resistance and impaired glucose toler-
ance in mice [120]. Intriguingly, let-7 targets are enriched
for genes that contain SNPs associated with type 2 dia-
betes and fasting glucose in human genome-wide associ-
ation studies [120]. Lin28, a developmentally regulated
RNA-binding protein, selectively blocks the processing of
pri-let-7 miRs [121]. Notably, the restoration of the Lin28
protein blocked let-7 expression and restored glucose me-
tabolism in adipose-derived stem cells derived from obese
tissues [122]. The most interesting miRs in inflammatory
microvesicles in association with metabolic and cardiovas-
cular diseases recently reported are the let-7 family,
miR17/92 family, miR-21, miR-29, miR-126, miR-133,
miR-146 and miR-155 [123]. Notably, there is a substantial
overlap with miRs derived from milk exosomes (Table 1).

Conclusions and future perspectives
Routine milk consumption, which has been boosted by
the introduction of refrigeration technology in the early
1950´s, is an evolutionarily novel dietary behavior of
Homo sapiens of the Neolithic period, which may have
adverse long-term biological consequences [2]. Milk is
not just food but appears to represent a most sophisti-
cated endocrine signaling system activating mTORC1
via special maternal milk-derived dietary messengers
controlled by the mammalian lactation genome: BCAAs
of milk proteins and exosomal miRs produced by the
mammary gland, which appear to augment mTORC1
signaling for postnatal growth. In this regard, it is of crit-
ical concern that persistently increased mTORC1 signal-
ing has been recognized as the fundamental driving
force for the development of mTORC1-driven diseases
of civilization [77-83]. Therefore, future research in nu-
trition science should pay special attention to the func-
tion of milk-derived BCAAs and furthermore should
clarify the potential role of milk´s exosomal miR-transfer
on metabolic regulation in the milk recipient. The
potential uptake of labeled exosomal miRs derived from
commercial milk has to be studied in animal models and
humans in greater detail.
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IRS: Insulin receptor substrate; PI3K: Phosphoinositide-3 kinase; LAT: L-type
amino acid transporter; Leu: Leucine; miR: micro-ribonucleic acid;
MEK: Mitogen-activated protein kinase kinase 1; mTORC1: Mechanistic
(mammalian) target of rapamycin complex 1; PDCD4: Programmed cell
death 4; PDPK1: 3-Phosphoinositide-dependent protein kinase 1;
PTEN: Phosphatase and tensin homolog; RTK: Receptor tyrosine kinase;
Raf: V-RAF-1 murine leukemia viral oncogene homolog; Ras: V-HA-RAS rat
sarcoma viral oncogene homolog; Rheb: Ras homolog enrich in brain;
S6K1: Ribosomal protein S6 kinase, 70-kD kinase 1; SOS: Son of sevenless;
SPRY2: Sprouty2; Trp: Tryptophan; SREBP-1: Sterol regulatory element-binding
transcription factor 1; TSC2: Tuberin; WAT: White adipose tissue.
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